(TA: Jonghui Kim)

TERMPROJECT\#1 (Due 05/22)

1. Obtain a solution for the following 1-D wave equation using the numerical scheme (see attached appendix) and compare to the analytic solution (also, derive the analytic solution): Draw the graph of ' u ' as a function of ' x ' with various conditions given at the below. Discuss the results.

Equation: $\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=0$
Initial condition: $\mathrm{u}(\mathrm{x})=0.1 \exp \left(-\ln 2 \times\left(\frac{x}{5}\right)^{2}\right)$
2. Obtain a solution for the following 3-D wave equation the using numerical scheme (see attached appendix) and compare to the analytic solution (also, derive the analytic solution):

Draw the graph of ' u ' as a function of ' r ' with various conditions given at the below. Discuss the results.

Equation: $\frac{\partial u}{\partial t}+\frac{u}{r}+\frac{\partial u}{\partial r}=0, \quad \mathrm{r}>5$

Boundary condition: $r=5, \quad u=\sin (\omega t), \quad t>0, \quad \omega=0.25 \pi$

Appendix

※ Numerical analysis condition

Calculation area: $-50<x<200$ (problem 1)

$$
5<\mathrm{r}<200(\text { problem } 2)
$$

Time to show the results: $\mathrm{t}=20 \mathrm{~s}, 40 \mathrm{~s}, 60 \mathrm{~s}, 80 \mathrm{~s}, 100 \mathrm{~s}$
Grid size: $\Delta x, \Delta r=0.5 / \Delta t=0.05$
Boundary condition:
Problem 1: periodic boundary condition

Problem 2:
Inlet B.C $(\mathrm{U}(0), \mathrm{U}(-1), \mathrm{U}(-2))$: Use the exact solution at the location and time
Outlet B.C (U(IM+1), U(IM+2), U(IM+3)): Use linear interpolation

$$
\begin{aligned}
& \mathrm{U}(\mathrm{IM}+1)=2 \mathrm{U}(\mathrm{IM})-\mathrm{U}(\mathrm{IM}-1) \\
& \mathrm{U}(\mathrm{IM}+2)=2 \mathrm{U}(\mathrm{IM}+1)-\mathrm{U}(\mathrm{IM}) \\
& \mathrm{U}(\mathrm{IM}+3)=2 \mathrm{U}(\mathrm{IM}+2)-\mathrm{U}(\mathrm{IM}+1)
\end{aligned}
$$

※ Numerical scheme

Space differentiation: Dispersion-Relation-Preserving

$$
\begin{aligned}
\left(\frac{\partial f}{\partial x}\right)_{l} & =\frac{1}{\Delta x} \sum_{j=-3}^{3} a_{j} f(x+j \Delta x) ; \quad a_{-j}=-a_{j} \\
a_{0} & =0.0 \\
a_{1} & =-a_{-1}=0.770882380518 \\
a_{2} & =-a_{-2}=-0.166705904415 \\
a_{3} & =-a_{-3}=0.0208431427703
\end{aligned}
$$

Time differentiation: $4^{\text {th }}$ order Optimized Adams-Bashforth method

$$
\begin{aligned}
& k_{1}=f\left(x_{n}, t-3 \Delta t\right) \\
& k_{2}=f\left(x_{n}, t-2 \Delta t\right) \\
& k_{3}=f\left(x_{n}, t-\Delta t\right) \\
& k_{4}=f\left(x_{n}, t\right) \quad \text { if } t<0 \quad \text { then } f(t)=0 \\
& y^{n+1}=y^{n}+\Delta t\left\{B_{0} k_{4}+B_{1} k_{3}+B_{2} k_{2}+B_{3} k_{1}\right\}
\end{aligned}
$$

$$
\mathrm{B} 0=2.302558088838
$$

$$
\text { B1 }=-2.491007599848
$$

$$
B 2=1.574340933182
$$

$$
B 3=-0.385891422172
$$

